Thursday, May 16, 2019

Conclusion and managerial implications Essay

A streak is a short period of good or bad luck. A squad is tell to stupefy a triumphant streak when it wins many impales consecutively, and to befuddle a loosing streak when it looses many matches in a row. It is quite easy to say that a group has good players, and hence has a proud chance of attractive. Upon closer consideration, though, it may become app atomic number 18nt that the skill and style of play of the police squads playing against them has an classic part to play, and so atomic number 18 other factors like coaching and the spirit in the players.In this work, we have considered somewhat variables that appear likely to influence the teams chance of winning. Specifically, we chose obstructor 3-points per indorse, team 3-points per indorse, team dispense with throws per racy, team turnovers per gamy, opponent turnovers per enlivened, team reverberations per jeopardize and opponent limits per biz as key find variables in determining the winning chan ce of a basketball team. We had to deal with the occurrence unusually hulking or small values in the selective randomness, since they affect the final outcome.Therefore we formed a quaternate infantile fixation theoretical account for prediction, and modified it until we came up with a model with six variables. Our model can be trusted to predict the chance of a team winning by up to 80%, and the fortune win can be predicted with an error margin 0. 1479 percent points about 95% of the time. Our model showed us that the more than(prenominal) turnovers a team has and the more reverberates from an opponent, the less the chance of winning. However, the more 3-point shots, free throws and jounces made, and the more turnovers an opponent makes, the greater a teams chance of winning.3 TABLE OF CONTENTS Executive heavyset 2 Objective of the study 4 Data description 5 Technical report 6 12 Conclusion and managerial implications 14 Appendices extension I Descriptive statistics f or the variables 15 Appendix II thump p crowds for the variables 16 Appendix III Scatter plots, winning chance vs. for apiece one variable 17 Appendix IV Multiple arrested development details for 8-variable model 20 Appendix V ease plots for the 8 variables 21 Appendix VI Best subsets regression details 23 Appendix vii turnabout details for 5-variable model 24.Appendix VIII eternal sleep Plots for 5 variables 26 Appendix IX relapse excluding residual outliers for 5-variable model 28 Appendix X backsliding for 6-variable model 29 Appendix XI sleep plots for 6-variable model 30 Appendix twelve (a) The final regression model 32 Appendix XII (b) Residual plots for the final regression model 33 4 OBJECTIVE OF THE sight The objective of his study is to create a regression model for predicting the voice wining of a basketball team among many basketball teams in a position basketball season. retroflection analysis is a method acting that aids us in predicting the outcome of a variable, given the values of one or more other (independent) variables. The model thus obtained is examined to ascertain the reliability of its prediction. In our analysis, therefore, we are out to examine a multiple regression model that we shall build, and improve on it until we find the best model for the job. We are move by the fact that fans of teams e very(prenominal) now and then go into arguments (and even betting) about what chance there is for a particular team to win. pleasing a plot, we believe, is non entirely a chance occurrence. We therefore want to investigate what factors can be expected to determine the winning chance of a team. We do not expect to get a magical model, but that we entrust have to modify our model until its predictive ability has been greatly improved. The importance of this work lies in the fact that, without accurate knowledge of the about influential factors affecting a phenomenon, one may end up spending a lot of resources (time, energy a nd money) on a factor that might not be so important, at the cost of the really important factors.This results in a lot of input with no corresponding output, thereby lead story to frustration. This can be especially true in sports and related activities. This work is our little contribution to more efficient planning and sport outing for a basketball team.5 DATA DESCRIPTION The information that we have used is taken from It presents the statistics for sixty-eight (68) teams in a sporting season. Therefore we shall not be going into issues of time series or other techniques that come into play when dealing with data that has been sedate over an extended period.The data presents a list of 68 basketball teams. Each team has vie a number of blues in a particular basketball sporting season. The spreadsheet contains a lot of information on these 68 teams, such as their winning percentage and vital statistics of the endorseys played in this particular season. In this work, we are going to designate a dependent variable (Y) and seven independent variables (X1, X2, X3, X4, X5, X6 and X7). The variables are defined as follows Y = fetching Percentage X1 = foemans 3-point per peppy X2 = Teams 3-point per game X3 = Teams free throws pr gameX4 = Teams turnover per game X5 = Opponents turnover per game X6 = Teams border per game X7 = Opponents take shape per game With the above variables, we shall formulate a regression model for the winning percentage of a team in this data.6 TECHNICAL REPORT 6. 1 Preliminaries Our first task, having obtained the data, is to examine the descriptive statistics for each of our independent variables. The Minitab result is presented in Appendix I. The data appears to be normally distributed, since the mean and median are close. To further verify this, we will cheek at the box plots for each of the variables.The box plots reveal that the data is normally distributed, except for turnover per game and opponent turnover per game with one outlier each, and home rebound per game with three outliers. The Box plots are presented in Appendix II. To further understand our data, we still look at the scatter plots of each variable against the winning percentage. This will show us the extent to which each of then influence the winning percentage. Although this is not the final regression model, it presents us with marginal regression relationships surrounded by each variable and the winning percentage.The details of the results are presented in Appendix III. The marginal regressions reveal that some of the variables are more influential to the winning percentage than others, but we note that this is not the final regression model yet. On close examination, we observe that Opponents 3-point per game accounts for very little of the chances of winning a game, and in fact is negatively correlated with percentage wins of a team. A similar outcome arises concerning Teams turnover per game, only that the relationship is even weaker here. The same goes for Teams rebound per game.The rest exhibit a positive correlation. The strongest correlation observable from the scatter plots is that of Teams free throws per game, and the weakest positive correlation is that of Opponents turnover per game. 6. 2 6. 4. 1 7 retroflection analysis is a very useful analysis tool. Moreover, with the aid of modern computers, data analysis is even easier (and sometimes fun) to carry out. The final model we have been able to come up with will help in predicting the winning chance of a basketball team. We would like to state here that our model does not have magical powers of prediction.The predictive accuracy of the model has been stated in the body of this work, and shows us that it does not represent EVERY variable that affects the winning chance of a team. It is common knowledge that factors like the co-operation between team management and players, relationship among players, the individual skills of the players and the support of a teams fans play a very important role in a teams ability to win a game, and so do many other factors. Yet these factors cannot be quantitatively described so as to be included in the model.Nevertheless, we believe that the variables we have analyzed have very important roles to play, and therefore should not be ignored. We therefore recommend, based on our findings, that a team should strategize its game so as to understate their turnovers, since from our model they have the strongest negative effect on their winning chance. Similarly, the opponents rebound will do damage. On the other hand, a basketball team should, as much as possible, maximise their 3-point shots, free throws, rebounds and the opponents turnovers, since according to our model, these have a positive influence on their winning chance.Finally to the sports fan, you can know what to expect from a team if you can observe the above-mentioned variables. So, quite of raising your heart rate in blind antic ipation, you can assess for yourself the chance that your favorite team will not let you down. In the meantime, we wish you the best of luck8 adjunctES 8. 1 vermiform process I Descriptive Statistics for the variables 1. Descriptive Statistics unsettled N N* Mean SE Mean StDev edition Minimum Winning percentage 68 0 0. 5946 0. 0197 0. 1625 0. 0264 0. 2333 Opp 3-point per game 68 0 6. 318 0.107 0. 880 0. 774 3. 788 3-point per game 68 0 6. 478 0. 161 1. 326 1. 757 3. 645 give up throws per game 68 0 14. 203 0. 280 2. 307 5. 323 8. 536 Turn-over, pg 68 0 14. 086 0. 164 1. 355 1. 835 10. 974 Opponent Turn-over,pg 68 0 14. 755 0. 192 1. 583 2. 506 11. 438 star sign rebound per game 68 0 35. 380 0. 389 3. 209 10. 297 27. 323 Oppnt rebound per game 68 0 33. 841 0. 258 2. 128 4. 528 28. 970 variable star Q1 median Q3 Maximum Range IQR Winning percentage 0.4707 0. 5938 0. 7403 0. 9487 0. 7154 0. 2696 Opp 3-point per game 5. 688 6. 323 6. 956 8. 138 4. 350 1. 268 3-point per game 5. 78 2 6. 433 7. 413 9. 471 5. 825 1. 631 unornamented throws per game 12. 619 14. 322 15. 883 19. 568 11. 032 3. 264 Turn-over, pg 13. 116 14. 000 14. 875 17. 656 6. 682 1. 759 Opponent Turn-over,pg 13. 574 14. 769 15. 514 18. 406 6. 969 1. 939 photographic plate rebound per game 33. 304 35. 383 37. 063 45. 548 18. 226 3. 758 Oppnt rebound per game 32. 611 33. 754 35. 047 39. 938 10. 968 2. 436 2.Descriptive Statistics Winning percentage Variable N N* Mean SE Mean StDev Minimum Q1 Median Winning percentage 68 0 0. 5946 0. 0197 0. 1625 0. 2333 0. 4707 0. 5938 Variable Q3 Maximum IQR Variance Range Winning percentage 0. 7403 0. 9487 0. 2696 0. 026 o. 7154 8. 2 APPENDIX II Box Plots for the variables 8. 3 APPENDIX III Scatter Plots (With Corresponding Regression Equations) Regression abstract Winning percentage versus Opp 3-point per game The regression equation is Winning percentage = 0. 729 0. 0212 Opp 3-point per game S = 0.162686 R-Sq = 1. 3% R-Sq(adj) = 0. 0% Regression Analysis Winning percentage versus 3-point per game The regression equation is Winning percentage = 0. 397 + 0. 0304 3-point per game S = 0. 158646 R-Sq = 6. 2% R-Sq(adj) = 4. 7% Regression Analysis Winning percentage versus dethaw throws per game The regression equation is Winning percentage = 0. 058 + 0. 0378 Free throws per game S = 0. 138185 R-Sq = 28. 8% R-Sq(adj) = 27. 7% Regression Analysis Winning percentage versus Turn-over, pg The regression equation is Winning percentage = 1. 14 0. 0387 Turn-over, pg S = 0. 155019 R-Sq = 10.4% R-Sq(adj) = 9. 0% Regression Analysis Winning percentage versus Opponent Turn-over,pg The regression equation is Winning percentage = 0. 293 + 0. 0204 Opponent Turn-over,pg S = 0. 160503 R-Sq = 4. 0% R-Sq(adj) = 2. 5% Regression Analysis Winning percentage versus inhabitancy rebound per game The regression equation is Winning percentage = 0. 243 + 0. 0237 Home rebound per game S = 0. 144773 R-Sq = 21. 9% R-Sq(adj) = 20. 7% Regression Analysis Winning per centage versus Oppnt rebound per game The regression equation is Winning percentage = 1. 44 0. 0249 Oppnt rebound per game S = 0.154803 R-Sq = 10. 7% R-Sq(adj) = 9. 3% 8.4 APPENDIX IV Multiple Regression Details Regression Analysis Winning perc versus 3-point per , Free throws , The regression equation is Winning percentage = 0. 633 + 0. 0224 3-point per game + 0. 0176 Free throws per game 0. 0622 Turn-over, pg + 0. 0414 Opponent Turn-over,pg + 0. 0267 Home rebound per game 0. 0296 Oppnt rebound per game 0. 0172 Opp 3-point per game soothsayer Coef SE Coef T P ceaseless 0. 6327 0. 2123 2. 98 0. 004 3-point per game 0. 022369 0. 007221 3. 10 0. 003Free throws per game 0. 017604 0. 005720 3. 08 0. 003 Turn-over, pg -0. 062214 0. 007380 -8. 43 0. 000 Opponent Turn-over,pg 0. 041398 0. 006398 6. 47 0. 000 Home rebound per game 0. 026699 0. 004175 6. 39 0. 000 Oppnt rebound per game -0. 029645 0. 004594 -6. 45 0. 000 Opp 3-point per game -0. 01724 0. 01130 -1. 53 0. 132 S = 0. 074 7588 R-Sq = 81. 1% R-Sq(adj) = 78. 8% Analysis of Variance ancestry DF SS MS F P Regression 7 1. 43486 0. 20498 36. 68 0. 000 Residual misunderstanding 60 0. 33533 0. 00559 tot up 67 1.77019 spring DF Seq SS 3-point per game 1 0. 10906 Free throws per game 1 0. 53614 Turn-over, pg 1 0. 24618 Opponent Turn-over,pg 1 0. 13117 Home rebound per game 1 0. 13403 Oppnt rebound per game 1 0. 26527 Opp 3-point per game 1 0. 01302 Unusual Observations 3-point Winning Obs per game percentage Fit SE Fit Residual St Resid 2 4. 59 0. 79412 0. 63575 0. 02114 0. 15837 2. 21R 27 6. 60 0. 76667 0. 60456 0. 01272 0. 16211 2. 20R 30 6. 21 0. 50000 0. 65441 0. 01571 -0. 15441 -2.11R 45 4. 75 0. 25000 0. 39253 0. 02404 -0. 14253 -2. 01R R denotes an observation with a tumid standardized residual. 8. 5 APPENDIX V Residuals plots for the 8 variables 8. 6 APPENDIX VI Best Subsets Regression Best Subsets Regression Winning perc versus Opp 3-point , 3-point per , Response is Winning percentage O O H p O F p o p p r p m n p e o e t e n 3 3 e r r t n e e p p h t b b o o r T o o i i o u T u u n n w r u n n t t s n r d d n p p p o p p e e e v o e e r r r e v r r r e g g g , r g g a a a , a a Mallows m m m p p m m.Vars R-Sq R-Sq(adj) Cp S e e e g g e e 1 28. 8 27. 7 161. 5 0. 13818 X 1 21. 9 20. 7 183. 5 0. 14477 X 2 46. 9 45. 3 106. 1 0. 12021 X X 2 41. 2 39. 4 124. 4 0. 12658 X X 3 55. 2 53. 1 81. 7 0. 11126 X X X 3 54. 9 52. 8 82. 9 0. 11172 X X X 4 73. 8 72. 2 24. 9 0. 085772 X X X X 4 65. 1 62. 9 52. 4 0. 098958 X X X X 5 77. 7 75. 9 14. 6 0. 079790 X X X X X 5 76. 8 74. 9 17. 6 0. 081431 X X X X X.6 80. 3 78. 4 8. 3 0. 075569 X X X X X X 6 78. 1 75. 9 15. 5 0. 079781 X X X X X X 7 81. 1 78. 8 8. 0 0. 074759 X X X X X X X 8. 7 APPENDIX VII Regression Analysis with basketball team Variables Regression Analysis The regression equation is Winning percentage = 0. 528 + 0. 0250 3-point per game 0. 0631 Turn-over, pg + 0. 0471 Opponent Turn-over,pg + 0. 0349 Home rebound per game 0. 0336 Oppnt rebound per game Predictor Coef SE Coef T P Constant 0. 5280 0. 2213 2. 39 0. 020 3-point per game 0.025031 0. 007617 3. 29 0. 002.Turn-over, pg -0. 063103 0. 007859 -8. 03 0. 000 Opponent Turn-over,pg 0. 047061 0. 006531 7. 21 0. 000 Home rebound per game 0. 034908 0. 003176 10. 99 0. 000 Oppnt rebound per game -0. 033572 0. 004713 -7. 12 0. 000 S = 0. 0797903 R-Sq = 77. 7% R-Sq(adj) = 75. 9% Analysis of Variance Source DF SS MS F P Regression 5 1. 37547 0. 27509 43. 21 0. 000 Residual Error 62 0. 39472 0. 00637 full(a) 67 1. 77019 Source DF Seq SS 3-point per game 1 0. 10906.Turn-over, pg 1 0. 13137 Opponent Turn-over,pg 1 0. 15696 Home rebound per game 1 0. 65508 Oppnt rebound per game 1 0. 32300 Unusual Observations 3-point Winning Obs per game percentage Fit SE Fit Residual St Resid 8 4. 13 0. 83333 0. 66281 0. 02375 0. 17053 2. 24R 13 6. 79 0. 55172 0. 72095 0. 02073 -0. 16923 -2. 20R 27 6. 60 0. 76667 0. 60253 0. 01331 0. 16414 2. 09R 30 6. 21 0. 50000 0. 6632 1 0. 01474 -0. 16321 -2. 08R 45 4. 75 0. 25000 0. 41575 0. 02187 -0. 16575 -2. 16R.R denotes an observation with a large standardized residual. APPENDIX VII (Continued) Descriptive Statistics for five Variables Descriptive Statistics Variable N N* Mean SE Mean StDev Variance Minimum Winning percentage 68 0 0. 5946 0. 0197 0. 1625 0. 0264 0. 2333 3-point per game 68 0 6. 478 0. 161 1. 326 1. 757 3. 645 Turn-over, pg 68 0 14. 086 0. 164 1. 355 1. 835 10. 974 Opponent Turn-over,pg 68 0 14. 755 0. 192 1. 583 2. 506 11. 438 Home rebound per game 68 0 35. 380 0. 389 3. 209 10.297 27. 323 Oppnt rebound per game 68 0 33. 841 0. 258 2. 128 4. 528 28. 970 Variable Q1 Median Q3 Maximum Range IQR Winning percentage 0. 4707 0. 5938 0. 7403 0. 9487 0. 7154 0. 2696 3-point per game 5. 782 6. 433 7. 413 9. 471 5. 825 1. 631 Turn-over, pg 13. 116 14. 000 14. 875 17. 656 6. 682 1. 759 Opponent Turn-over,pg 13. 574 14. 769 15. 514 18. 406 6. 969 1. 939 Home rebound per game 33. 304 35. 383 37. 063 45. 548 18. 226 3. 758 Oppnt rebound per game 32. 611 33. 754 35. 047 39.938 10. 968 2. 436 8. 8.APPENDIX VIII Residual Plots for 5 variables 8. 9 APPENDIX IX Regression Excluding Residual Outliers Regression Analysis The regression equation is Winning percentage = 0. 487 + 0. 0184 Free throws per game + 0. 0240 Opponent Turn-over,pg + 0. 0188 Home rebound per game 0. 0303 Oppnt rebound per game 0. 0243 Opp 3-point per game Predictor Coef SE Coef T P Constant 0. 4873 0. 2956 1. 65 0. 105 Free throws per game 0. 018444 0. 009412 1. 96 0. 055 Opponent Turn-over,pg 0. 024021 0. 009784 2. 46 0. 017Home rebound per game 0. 018835 0. 006555 2. 87 0. 006 Oppnt rebound per game -0. 030258 0. 007625 -3. 97 0. 000 Opp 3-point per game -0. 02428 0. 02129 -1. 14 0. 259 S = 0. 118905 R-Sq = 49. 8% R-Sq(adj) = 45. 7% Analysis of Variance Source DF SS MS F P Regression 5 0. 84309 0. 16862 11. 93 0. 000 Residual Error 60 0. 84831 0. 01414 Total 65 1. 69140 Source DF Seq SS Free throws per game 1 0. 47458 Opponent Turn-over,pg 1 0. 03295 Home rebound per game 1 0. 04175 Oppnt rebound per game 1 0.27543 Opp 3-point per game 1 0. 01839 Unusual Observations Free throws Winning Obs per game percentage Fit SE Fit Residual St Resid 12 12. 2 0. 3333 0. 5854 0. 0270 -0. 2521 -2. 18R 34 12. 2 0. 9487 0. 6218 0. 0297 0. 3269 2. 84R 42 14. 5 0. 2333 0. 5227 0. 0400 -0. 2893 -2. 58R 43 12. 5 0. 2500 0. 4925 0. 0367 -0. 2425 -2. 14R R denotes an observation with a large standardized residual. 8. 10 APPENDIX X Regression with 6 Variables Regression Analysis Winning perc versus 3-point per , Free throws , The regression equation is Winning percentage = 0. 565 + 0. 0239 3-point per game + 0. 0163 Free throws per game 0. 0630 Turn-over, pg + 0. 0436 Opponent Turn-over,pg + 0. 0265 Home rebound per game 0. 0310 Oppnt rebound per game Predictor Coef SE Coef T P Constant 0. 5654 0. 2100 2. 69 0. 009 3-point per game 0. 023949 0. 007224 3. 32 0. 002 Free throws per game 0. 016290 0. 005717 2. 85 0. 006 Turn-over, pg -0. 062984 0. 007443 -8. 46 0. 000 Opponent Turn-over,pg 0. 043571 0. 006305 6. 91 0.000 Home rebound per game 0. 026482 0. 004218 6. 28 0. 000 Oppnt rebound per game -0. 031028 0. 004552 -6. 82 0. 000 S = 0. 0755690 R-Sq = 80. 3% R-Sq(adj) = 78. 4% Analysis of Variance Source DF SS MS F P Regression 6 1. 42184 0. 23697 41. 50 0. 000 Residual Error 61 0. 34835 0. 00571 Total 67 1. 77019 Source DF Seq SS 3-point per game 1 0. 10906 Free throws per game 1 0. 53614 Turn-over, pg 1 0. 24618 Opponent Turn-over,pg 1 0. 13117 Home rebound per game 1 0. 13403.Oppnt rebound per game 1 0. 26527 Unusual Observations 3-point Winning Obs per game percentage Fit SE Fit Residual St Resid 27 6. 60 0. 76667 0. 60084 0. 01262 0. 16582 2. 23R 44 6. 03 0. 23333 0. 38536 0. 02559 -0. 15202 -2. 14R 45 4. 75 0. 25000 0. 41158 0. 02076 -0. 16158 -2. 22R R denotes an observation with a large standardized residual. 8. 11 APPENDIX XI Residual Plots for the 6-variable Model 8. 12 APPENDIX XII (a) The Final Regression Model. Regression Analysis Winning perc versus 3-point per , Free throws , The regression equation is Winning percentage = 0. 604 + 0. 0226 3-point per game + 0. 0167 Free throws per game 0. 0660 Turn-over, pg + 0. 0420 Opponent Turn-over,pg + 0. 0256 Home rebound per game 0. 0292 Oppnt rebound per game Predictor Coef SE Coef T P Constant 0. 6038 0. 2065 2. 92 0. 005 3-point per game 0. 022564 0. 007108 3. 17 0. 002 Free throws per game 0. 016706 0. 005600 2. 98 0. 004 Turn-over, pg -0. 066016 0. 007456 -8. 85 0. 000 Opponent Turn-over,pg 0. 041969 0. 006229 6. 74 0.000 Home rebound per game 0. 025649 0. 004152 6. 18 0. 000 Oppnt rebound per game -0. 029173 0. 004561 -6. 40 0. 000 S = 0. 0739739 R-Sq = 80. 8% R-Sq(adj) = 78. 8% Analysis of Variance Source DF SS MS F P Regression 6 1. 37853 0. 22976 41. 99 0. 000 Residual Error 60 0. 32833 0. 00547 Total 66 1. 70686 Source DF Seq SS 3-point per game 1 0. 10202 Free throws per game 1 0. 50620 Turn-over, pg 1 0. 30758 Opponent Turn-over,pg 1 0. 11512 Home rebound per game 1 0. 12372.Oppnt rebound per game 1 0. 22390 Unusual Observations 3-point Winning Obs per game percentage Fit SE Fit Residual St Resid 26 6. 60 0. 76667 0. 60237 0. 01238 0. 16429 2. 25R 29 6. 21 0. 50000 0. 64694 0. 01477 -0. 14694 -2. 03R 43 6. 03 0. 23333 0. 38546 0. 02505 -0. 15213 -2. 19R 44 4. 75 0. 25000 0. 41580 0. 02045 -0. 16580 -2. 33R R denotes an observation with a large standardized residual.APPENDIX XII (b) Residual Plots for the final regression model.APPENDIXXII (b) Continued REFERENCES Please state the source of data here.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.